

Materials Science & Chemistry

Fall semester (Sept - Feb)
2nd year of Master

Teaching Units	Teaching modules	Code	Hours			FOTO
			Course	Practical Work	Total	ECTS
Languages	French as a foreign language		20		20	5
		•				
Research Project	Writing Report Oral Defense					10
Industrial Project	Writing Report Oral Defense					5

Energy & Mater	ials				
Materials Science	Luminescent materials	15		15	2
	Criteria for materials selection	3	12 TP	15	2
	Application of finite elements to thermo- mechanical coupling		12 TP	12	2
	Amorphous materials	14		14	2
	Materials and Nuclear applications	14		14	2
	Non equilibrium thermodynamics	14	3 TD	17	2
	Corrosion of materials	21	7TD-4TP	32	3
Choice 1 (Materials for Energy)	Photovoltaics	14		14	2,5
	Thermoelectricity	14		14	2,5
Choice 2 (Materials for structures)	Fatigue and materials failure	14	7 TD	21	3
	Thermodynamic of metallic alloys	15		15	2
Total				147/155	20

Courses in italics are taught in French with slides, handouts and examinations in English

Materials Science & Chemistry

Fall semester (Sept - Feb)
2nd year of Master

Chemistry – Catalysis for energy and environment						
Catalysis for Energy & Environment	Life cycle analysis: Application to processes	15		15	2	
	Biofuels & refining	15		15	2	
	Capture, recovery and hydrogenation of CO ₂	15		15	2	
	Remediation Catalysis	15		15	2	
	Hydrogen and synthetic gas (SynGas)	15		15	2	
Chemical Engineering	Applied Fluid Mechanics	- 10	5TD+16TP	31	3	
	Engineering of separation process	15	12 TP	27	3	
	Engineering of catalytic process	15		15	2	
	Treatment of industrial effluents	10		10	2	
Total				158	20	

Chemistry - Organic Synthesis						
Analytical Chemistry	Engineering of separation process	15	12 TP	27	4	
and Chemical engineering	Advanced Chromatography	15		15	2	
	Treatment of industrial effluents	10		10	2	
Organic Synthesis	Retrosynthetic analysis & Total synthesis	20		20	2	
	Asymmetric synthesis & organometallics	20		20	2	
	Heterocyclic compounds	20		20	2	
	Catalysis and industry	10		10	2	
	Heteroelements	20		20	2	
	Energy Transition	15		15	2	
Total				157	20	

Courses in italics are taught in French with slides, handouts and examinations in English